Thinking Data Science: A Data Science Practitioner's Guide

شرح:

این راهنمای قطعی پروژه‌های یادگیری ماشینی به مشکلاتی که یک دانشمند داده مشتاق یا با تجربه اغلب دارد پاسخ می‌دهد: آیا در مورد استفاده از چه فناوری برای توسعه ML خود سردرگم هستید؟ آیا باید از GOFAI، ANN/DNN یا Transfer Learning استفاده کنم؟ آیا می توانم برای توسعه مدل به AutoML تکیه کنم؟ اگر مشتری گیگ و ترابایت داده برای توسعه مدل‌های تحلیلی به من بدهد چه؟ چگونه مجموعه داده های پویا با فرکانس بالا را مدیریت کنم؟ این کتاب ادغام کل فرآیند علم داده را در یک "برگ تقلب" به پزشک ارائه می دهد.


چالش یک دانشمند داده استخراج اطلاعات معنادار از مجموعه داده های عظیم است که به ایجاد استراتژی های بهتر برای کسب و کارها کمک می کند. بسیاری از الگوریتم های یادگیری ماشین و شبکه های عصبی برای انجام تجزیه و تحلیل بر روی چنین مجموعه داده هایی طراحی شده اند. برای یک دانشمند داده، این یک تصمیم دلهره آور است که از کدام الگوریتم برای یک مجموعه داده معین استفاده کند. اگرچه پاسخ واحدی برای این سوال وجود ندارد، اما یک رویکرد سیستماتیک برای حل مسئله ضروری است. این کتاب الگوریتم‌های مختلف ML را به صورت مفهومی توصیف می‌کند و فرآیندی را در انتخاب مدل‌های ML/DL تعریف/بحث می‌کند. ادغام الگوریتم ها و تکنیک های موجود برای طراحی مدل های کارآمد ML جنبه کلیدی این کتاب است. Thinking Data Science به تمرین دانشمندان داده، دانشگاهیان، محققان و دانشجویانی که می‌خواهند مدل‌های ML را با استفاده از الگوریتم‌ها و معماری‌های مناسب بسازند، چه داده‌ها کوچک یا بزرگ باشند، کمک می‌کند.

نظرات 0 + ارسال نظر
برای نمایش آواتار خود در این وبلاگ در سایت Gravatar.com ثبت نام کنید. (راهنما)
ایمیل شما بعد از ثبت نمایش داده نخواهد شد